STA303: Artificial Intelligence

Reinforcement Learning

Fang Kong

https://fangkongx.github.io/

Slide credits: ai.berkeley.edu

https://fangkongx.github.io/

Recap: MDPs

= Markov decision processes:
= States S
= Actions A
" Transitions P(s’|s,a) (or T(s,a,s’))
» Rewards R(s,a,s’) (and discount v)
= Start state s,

= Quantities:
" Policy = map of states to actions
= Utility = sum of discounted rewards
» Values = expected future utility from a state (max node)
= Q-Values = expected future utility from a g-state (chance node)

Recap: The Bellman Equations

= Definition of “optimal utility” via expectimax
recurrence gives a simple one-step lookahead
relationship amongst optimal utility values 7

V*(s) = max Q*(s, a)

Q*(S> a) = ZT(S, @, S,) [R(S, a, 3’) e ’YV*(S/)} o

V*(s) = mO?XZT(S,a, s") {R(s,a, s") + ’YV*(S,)}

" These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

Recap: Value Iteration

Start with Vy(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Viet1(s) < mC?XZT(S,a,, s") {R(s,a, s + *ka(s/)}

Repeat until convergence

Complexity of each iteration: O(S?A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Recap: Policy Evaluation

How do we calculate the V’s for a fixed policy ©?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

Voi(s) =0

ka—l—l(s) — ZT(S, 7w(s),s)[R(s,m(s),s) + ’YV]CW(S,)]

S

Efficiency: O(S?) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
= Solve with Matlab (or your favorite linear system solver)

Recap: Policy Extraction

" Let’s imagine we have the optimal values V*(s)

= How should we act?

=" |t’s not obvious!

= We need to do a mini-expectimax (one step)

m*(s) = arg Cl;naXZT(s, a,s)[R(s,a,s) +~V*(s)]

S

= This is called policy extraction, since it gets the policy implied by the values

Recap: Problems with Value Iteration

= Value iteration repeats the Bellman updates:

Vig1(s) <= max > T(s,a,5') |R(s,a,s") + v V(s

S

= Problem 1: It’s slow — O(S2A) per iteration

" Problem 2: The “arg max” at each state rarely changes

= Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2)]

Recap: Policy Iteration

= Evaluation: For fixed current policy =, find values with policy evaluation:
= |terate until values converge:

Vit 1 (s) < Y. T(s,mi(s),s') |R(s,mi(s),s") + v V(s

= |mprovement: For fixed values, get a better policy using policy extraction
= One-step look-ahead:

mi4+1(s) = arg maxZT(s, a,s) {R(s, a,s’) + 7\/%‘(5’)}

S

Reinforcement Learning

Reinforcement Learning

= Still assume a Markov decision process (MDP):

= Asetofstatess € S
= A set of actions (per state) A(s)

= A transition model T(s,a,s’)
= A reward function R(s,a,s’)

1 200
Cod™ R
Warm N 35 -3
G >

Overheated

= Still looking for a policy m(s)

= New twist: don’t know T or R

= |.e. we don’t know which states are good or what the actions do
= Must explore new states and actions to discover how the world works

Reinforcement Learning

* What if the MDP is initially unknown? Lots of things change!
= Exploration: you have to try unknown actions to get information
= Exploitation: eventually, you have to use what you know
" Regret: early on, you inevitably “make mistakes” and lose reward
= Sampling: you may need to repeat many times to get good estimates

" Generalization: what you learn in one state may apply to others too

Bandits

= Exactly one state
= Set of actions: A

= Stochastic reward
function: P(r|a)

Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning

Approaches to reinforcement learning

1. Model-based: Learn the model, solve it, execute the solution

2. Learn values from experiences, use to make decisions
a. Direct evaluation
b. Temporal difference learning

c. Q-learning

3. Optimize the policy directly

Passive vs Active Reinforcement Learning

&= q

"
il

Model-Based RL

Model-Based Learning

= Model-Based Idea:

= Learn an approximate model based on experiences
= Solve for values as if the learned model were correct

= Step 1: Learn empirical MDP model
= Count outcomes s’ for each s, a
= Directly estimate each entry in 7(s,a,s’) from counts
= Discover each R(s,a,s’) when we experience the transition

= Step 2: Solve the learned MDP

= Use, e.g., value or policy iteration, as before

Example: Model-Based Learning

Input Policy w

Observed Episodes (Training)

Episode 1

-
B, east, C, -1
C, east, D, -1

~N

Assume:y =1

[+
% D, exit, X, 10)

Episode 3

4)
E, north, C, -1
C,east, D, -1

Episode 2

-
B, east, C, -1
C, east, D, -1

~N

' +
\D, exit, X, 10)

Learned Model

T(s,a,s’)

[+
% D, exit, X, 10)

Episode 4

4)
E, north, C, -1
C, east, A, -1

-

4 T(B, east, C) =1.00

P(C, east, D) =0.75
P(C, east, A) =0.25

~

J

R(s,a,s’)

-

% A, exit, X, -10)

-

R(B, east, C) =-1
R(C, east, D) =-1
R(D, exit, x) = +10

~

J

Pros and cons

= Pro:

= Makes efficient use of experiences (low sample complexity)

= Con:

= May not scale to large state spaces
= Solving MDP is intractable for very large | S|

= RL feedback loop tends to magnify small model errors
" Much harder when the environment is partially observable

Basic idea of model-free methods

" To approximate expectations with respect to a distribution, you
can either
" Estimate the distribution from samples, compute an expectation

" Or, bypass the distribution and estimate the expectation from samples
directly

Example: Expected Age

Goal: Compute expected age of STA303 students

4 Known P(A))

E[A]=>_P(a)-a = 0.35x20 +...

Without P(A), instead collect samples [a;, a5, ... 3]

/ “Model Based”: estimate P(A): \

Why does this \7 IS(A=a)=N /N
a

work? Because
eventually you

learn the right E[A] = Za P(a)-a

ﬁModeI Free”: estimate expectatioh

model. /

Z Why does this
E[A] ~ 1/N Zi a work? Because

samples appear
with the right

\ frequencies.

—

Passive Reinforcement Learning

= Simplified task: policy evaluation 'C lﬂ
" |nput: a fixed policy 1(s)
" You don’t know T and R
= Goal: learn the state values \/"(s)

Direct evaluation

" Goal: Estimate V7(s), i.e., expected total discounted
reward from s onwards

= |dea:
= Use returns, the actual sums of discounted rewards from s

= Average over multiple trials and visits to s

* This is called direct evaluation (or direct utility
estimation)

Example: Direct Estimation

Input Policy & Observed Episodes (Training) Output Values
Episode 1 Episode 2

4 N\
B, east, C, -1 B, east, C, -1
C, east, D, -1 C, east, D, -1
% D, exit, X, +10) % D, exit, X, +10/

Episode 3 Episode 4

4 N\)
E, north, C, -1 E, north, C, -1
C,east, D, -1 C, east, A, -1
Assume:y =1 i i -
% D, exit, X, +1O/ % A, exit, X, 10)

Problems with Direct Estimation

= What'’s good about direct estimation? Output Values

" |t's easy to understand

" |t doesn’t require any knowledge of T and R

" |t converges to the right answer in the limit

= What's bad about it?
* Each state must be learned separately (fixable)

" |tignores information about state connections

If Band E both go to C
under this policy, how can
their values be different?

= So, it takes a long time to learn

E.g., B=at home, study hard
E=at library, study hard
C=know material, go to exam

Temporal Difference Learning

" Bigidea: learn from every experience!
= Update V(s) each time we experience a transition (s, a, s’, r)
= Likely outcomes s’ will contribute updates more often

* Temporal difference learning of values
= Policy still fixed, still doing evaluation!
= Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,7(s),s") +~4V™(s)
Update to V(s): VT(s) «+ (1 —a)V"(s) 4+ (a)sample

Same update: VT(s) <+ V™(s) + a(sample — V™ (s))

TD as approximate Bellman update

" Given a fixed policy, the value of a state is an
expectation over next-state values:

= V7(s) = X, T(s,m(s),s") [R(s,m(s),s") + yV7(s")]

" |dea 1: Use actual samples to estimate the expectation:
" sample, = R(s,m(s),s;") + yV™(s;') ’Q
" sample, = R(s,m(s),s,”) + yV(s,’)
= sampley = R(s,m(s),sy’) + YV™(s\')
" V(s) < 1/N 2, sample,

TD as approximate Bellman update

ldea 2: Update value of s after each transition s,a,s’,r :

Update V™ ([3,1]) based on R([3,1],up,[3,2]) and yV™([3,2])
Update V™ ([3,2]) based on R([3,2],up,[3,3]) and yV™([3,3])
Update V™ ([3,3]) based on R([3,3],right,[4,3]) and yV™([4,3])

TD as approximate Bellman update

" |dea 3: Update values by maintaining a running average

Running averages

" How do you compute the average of 1, 4, 77

* Method 1: add them up and divide by N
" 1+4+7 =12
= average=12/N=12/3=4
* Method 2: keep a running average L, and a running count n
" n=0 uy=0
" n=1 = (0-pg+x)/1=(0-0+1)/1 = 1
"n=2 u,= (1-py+%x)/2 =(1-1+4)/2 = 25
" n=3 py= (2 W, +x3)/3 = (2:25+7)/3 = 4
* General formula: p,,= ((n-1) - p,; + x,)/n
= = [(n-1)/n] n,., + [1/n] x, (weighted average of old mean, new sample)

Running averages contd.

" What if we use a weighted average with a fixed weight?

" Uy =(1-a) pog + OUX,

"n=l =X

"n=2 Ww,= (1-a)- -y, +ox, = (1-a) - x; + ax,

" n=3 pu3;= (1-a) - pu, + oxg = (1-a)? - %y + o(1-a)x, + axs

" n=4 p,= (1-a) - ps+ox, = (1-a)3 - x; + o(1-a)?x, + a(1-0) x5 + ox,
" |.e., exponential forgetting of old values
" L is unbiased

TD as approximate Bellman update

" |dea 3: Update values by maintaining a running average
= sample = R(s,n(s),s’) + yV*(s’)
= V7(s) « (1-a) - V™(s) + o - sample
= V7(s) « V™s) + o - [sample - V*(s)]
* This is the temporal difference learning rule
= [sample - V*(s)] is the “TD error”
= o is the learning rate

= Observe a sample, move V*(s) a little bit to make it more
consistent with its neighbor V™ (s’)

Example: TD Value Estimation

Input Policy & Observed Episodes (Training) Output Values

Episode 1 Episode 2

4 N\
B, east, C, -1 B, east, C, -1
C, east, D, -1 C, east, D, -1
% D, exit, X, +10) % D, exit, X, +10/

Episode 3 Episode 4

4 N\)
E, north, C, -1 E, north, C, -1
C,east, D, -1 C, east, A, -1
Assume:y =1 i i -
% D, exit, X, +1O/ % A, exit, X, 10)

Example: TD Value Estimation

. .. e . /
Experience transition i: (s;, a;, S;,7;).

Compute sampled value “target”: r; + yV™(s;).

Compute “TD error”: §; = (ri +)/V”(Sl-')) —V7T(s;).
Update: V™ (s;) += a; - 6;.

V(s)

S

a

r+yVe(s')

V7(s)

-

B, east, C, -1
C, east, D, -1
% D, exit, X, +10)

-

B, east, C, -1
C, east, D, -1
% D, exit, X, +10)

4)
E, north, C, -1
C,east, D, -1

M{O[O|T|>]|n

N|O|a|R~h]JWIN]—=] ~

] +
\D, exit, X, 10)

4)
E, north, C, -1
C, east, A, -1

% A, exit, X -10)

Example: TD Value Estimation

. .. e . /
Experience transition i: (s;, a;, S;,7;).

Compute sampled value “target”: r; + yV™(s;).

Compute “TD error”: §; = (ri +)/V”(Sl-')) —V7T(s;).

Update: V™ (s;) += a; - 6;.

V(s)

0

-2

9

-
B, east, C, -1

C, east, D, -1

% D, exit, X, +10)

-
B, east, C, -1

C, east, D, -1

% D, exit, X, +10)

4)
E, north, C, -1
C,east, D, -1

10

M{O[O|T|>]|n

8

i|s a s'"| r | r+yV™(s’) V™ (s))
1| B | east C | -1 -1+0 0 -1
2| C| east D | -1 -1+0 0 -1
31D exit -1 10 10+ 0 0 +10
4| B east C | -1 -1+ -1 -1 -1
5| C | east D | -1 -1+ 10 -1 +10
6| D exit -1 10 10+ 0 10 0
71 E| north | C | -1 -1+9 0 +8

] +
\D, exit, X, 10)

4)
E, north, C, -1
C, east, A, -1

% A, exit, X -10)

Problems with TD Value Learning

= Model-free policy evaluation! & &

= Bellman updates with running sample mean! & &

S

AANAANA AANAA LA AN A

= Need the transition model to improve the policy!

Q-learning as approximate Q-iteration

Recall the definition of Q values:

= Q°(s,a) = expected return from doing a in s and then behaving optimally
thereafter; and 7' (s) = max,Q’(s,a)

Bellman equation for Q values:

" Q*(s,a) = 2y T(s,0,5')[R(s,a,s") + y max, Q*(s",a’) |
Approximate Bellman update for Q values:

" Q(s,a) « (1-a)-Q(fs,a) + a-[R(s,a,s") +ymax,Q(s’,a’)]

We obtain a policy from learned Q(s,a), with no model!
= (No free lunch: Q(s,a) table is |A| times bigger than V(s) table)

Q-Learning

" Learn Q(s,a) values as you go
= Receive a sample (s,a,s’,r) vvv
* Consider your old estimate: Q(s,a) 100
= Consider your new sample estimate: v v
sample = R(s,a,s’) + y max, Q(s’,a’) >Q4.>Q< s
" Incorporate the new estimate into a running average: }g' é{}al >Q<

Q(s,a) « (1-a) Q(s,a) + a - [sample]

Q-VALUES AFTER 1000 EPISODES

[Demo: Q-learning — gridworld (L10D2)]
[Demo: Q-learning — crawler (L10D3)]

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler

Q-Learning Properties

= Amazing result: Q-learning converges to optimal policy -- even
if samples are generated from a suboptimal policy!

" This is called off-policy learning

= Caveats:
= You have to explore enough
" You have to eventually make the learning rate
small enough

= .. but not decrease it too quickly

= Basically, in the limit, it doesn’t matter how you select actions (!)

Summary

= RL solves MDPs via direct experience of transitions and rewards
" There are several approaches:

= | earn the MDP model and solve it

" Learn V directly from sums of rewards, or by TD local adjustments
= Still need a model to make decisions by lookahead

" Learn Q by local Q-learning adjustments, use it directly to pick actions
= (and about 100 other variations)
= Big missing pieces:
* How to explore without too much regret?
= How to scale this up to Tetris (109°), Go (10172), StarCraft (| A|=102%°)?

