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Recap: MDPs

§ Markov decision processes:
§ States S
§ Actions A
§ Transitions P(s’|s,a) (or T(s,a,s’))
§ Rewards R(s,a,s’) (and discount g)
§ Start state s0

§ Quantities:
§ Policy = map of states to actions
§ Utility = sum of discounted rewards
§ Values = expected future utility from a state (max node)
§ Q-Values = expected future utility from a q-state (chance node)
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Recap: The Bellman Equations

§ Definition of “optimal utility” via expectimax
recurrence gives a simple one-step lookahead
relationship amongst optimal utility values

§ These are the Bellman equations, and they characterize 
optimal values in a way we’ll use over and over
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Recap: Value Iteration

§ Start with V0(s) = 0: no time steps left means an expected reward sum of zero

§ Given vector of Vk(s) values, do one ply of expectimax from each state:

§ Repeat until convergence

§ Complexity of each iteration: O(S2A)

§ Theorem: will converge to unique optimal values
§ Basic idea: approximations get refined towards optimal values
§ Policy may converge long before values do
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Recap: Policy Evaluation

§ How do we calculate the V’s for a fixed policy p?

§ Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

§ Efficiency: O(S2) per iteration

§ Idea 2: Without the maxes, the Bellman equations are just a linear system
§ Solve with Matlab (or your favorite linear system solver)
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Recap: Policy Extraction

§ Let’s imagine we have the optimal values V*(s)

§ How should we act?
§ It’s not obvious!

§ We need to do a mini-expectimax (one step)

§ This is called policy extraction, since it gets the policy implied by the values



Recap: Problems with Value Iteration

§ Value iteration repeats the Bellman updates:

§ Problem 1: It’s slow – O(S2A) per iteration

§ Problem 2: The “arg max” at each state rarely changes

§ Problem 3: The policy often converges long before the values
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[Demo: value iteration (L9D2)]



Recap: Policy Iteration

§ Evaluation: For fixed current policy p, find values with policy evaluation:
§ Iterate until values converge:

§ Improvement: For fixed values, get a better policy using policy extraction
§ One-step look-ahead:



Reinforcement Learning



Reinforcement Learning

§ Still assume a Markov decision process (MDP):
§ A set of states s Î S
§ A set of actions (per state) A(s)
§ A transition model T(s,a,s’)
§ A reward function R(s,a,s’)

§ Still looking for a policy p(s)

§ New twist: don’t know T or R
§ I.e. we don’t know which states are good or what the actions do
§ Must explore new states and actions to discover how the world works



Reinforcement Learning

§ What if the MDP is initially unknown? Lots of things change!
§ Exploration: you have to try unknown actions to get information
§ Exploitation: eventually, you have to use what you know
§ Regret: early on, you inevitably “make mistakes” and lose reward
§ Sampling: you may need to repeat many times to get good estimates
§ Generalization: what you learn in one state may apply to others too



Bandits

§ Exactly one state
§ Set of actions: A
§ Stochastic reward 

function: P(r|a)



Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning



Approaches to reinforcement learning

1. Model-based: Learn the model, solve it, execute the solution
2. Learn values from experiences, use to make decisions

a. Direct evaluation
b. Temporal difference learning
c. Q-learning

3. Optimize the policy directly



Passive vs Active Reinforcement Learning



Model-Based RL



Model-Based Learning

§ Model-Based Idea:
§ Learn an approximate model based on experiences
§ Solve for values as if the learned model were correct

§ Step 1: Learn empirical MDP model
§ Count outcomes s’ for each s, a
§ Directly estimate each entry in T(s,a,s’) from counts
§ Discover each R(s,a,s’) when we experience the transition

§ Step 2: Solve the learned MDP
§ Use, e.g., value or policy iteration, as before



Example: Model-Based Learning

Input Policy p

Assume: g = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

T(s,a,s’).
T(B, east, C) = 1.00
P(C, east, D) = 0.75
P(C, east, A) = 0.25

…

T(s,a,s’)

R(s,a,s’)
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…



Pros and cons

§ Pro:
§ Makes efficient use of experiences (low sample complexity)

§ Con:
§ May not scale to large state spaces

§ Solving MDP is intractable for very large |S|

§ RL feedback loop tends to magnify small model errors
§ Much harder when the environment is partially observable



Basic idea of model-free methods

§ To approximate expectations with respect to a distribution, you 
can either
§ Estimate the distribution from samples, compute an expectation
§ Or, bypass the distribution and estimate the expectation from samples 

directly



Example: Expected Age
Goal: Compute expected age of STA303 students

“Model Based”: estimate P(A): “Model Free”: estimate expectation

Without P(A), instead collect samples [a1, a2, … aN]

P^(A=a) = Na/N

E[A] » åa P ̂(a) × a

Why does this 
work?  Because 
samples appear 
with the right 
frequencies.

Why does this 
work?  Because 
eventually you 
learn the right 

model.

Known P(A)

E[A] = åa P(a) × a  =  0.35 x 20 + …

E[A] » 1/N åi ai



Passive Reinforcement Learning

§ Simplified task: policy evaluation
§ Input: a fixed policy p(s)
§ You don’t know T and R
§ Goal: learn the state values Vp(s)



Direct evaluation

§ Goal: Estimate Vp(s), i.e., expected total discounted 
reward from s onwards

§ Idea: 
§ Use returns, the actual sums of discounted rewards from s
§ Average over multiple trials and visits to s

§ This is called direct evaluation (or direct utility 
estimation)



Example: Direct Estimation

Input Policy p

Assume: g = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

A

B C D

E

+8 +4 +10

-10

-2



Problems with Direct Estimation

§ What’s good about direct estimation?
§ It’s easy to understand
§ It doesn’t require any knowledge of T and R
§ It converges to the right answer in the limit

§ What’s bad about it?
§ Each state must be learned separately (fixable)
§ It ignores information about state connections
§ So, it takes a long time to learn

Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C 
under this policy, how can 
their values be different?

E.g., B=at home, study hard
E=at library, study hard

C=know material, go to exam 



Temporal Difference Learning

§ Big idea: learn from every experience!
§ Update V(s) each time we experience a transition (s, a, s’, r)
§ Likely outcomes s’ will contribute updates more often

§ Temporal difference learning of values
§ Policy still fixed, still doing evaluation!
§ Move values toward value of whatever successor occurs: running average

p(s)
s

s, p(s)
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Sample of V(s):

Update to V(s):

Same update:



TD as approximate Bellman update
§ Given a fixed policy, the value of a state is an 

expectation over next-state values:
§ Vp(s) = ås’ T(s,p(s),s’) [R(s,p(s),s’) + γVp(s’) ]

§ Idea 1: Use actual samples to estimate the expectation:
§ sample1 = R(s,p(s),s1’) + γVp(s1’) 
§ sample2 = R(s,p(s),s2’) + γVp(s2’)
§ …
§ sampleN = R(s,p(s),sN’) + γVp(sN’)
§ Vp(s) ¬ 1/N åi samplei



TD as approximate Bellman update
§ Idea 2: Update value of s after each transition s,a,s’,r :

§ Update Vp ([3,1]) based on R([3,1],up,[3,2]) and γVp([3,2])
§ Update Vp ([3,2]) based on R([3,2],up,[3,3]) and γVp([3,3])
§ Update Vp ([3,3]) based on R([3,3],right,[4,3]) and γVp([4,3])



TD as approximate Bellman update
§ Idea 3: Update values by maintaining a running average



Running averages

§ How do you compute the average of 1, 4, 7?
§ Method 1: add them up and divide by N

§ 1+4+7 = 12
§ average = 12/N = 12/3 = 4

§ Method 2: keep a running average µn and a running count n
§ n=0   µ0=0
§ n=1   µ1 =  (0 × µ0 + x1)/1 =  ( 0 × 0 + 1)/1   =   1
§ n=2   µ2 =  (1 × µ1 + x2)/2 =  (1 × 1 + 4)/2   =   2.5
§ n=3   µ3 =  (2 × µ2 + x3)/3 =  (2 × 2.5 + 7)/3   =   4
§ General formula: µn =  ((n-1) × µn-1 + xn)/n
§ = [(n-1)/n]µn-1 + [1/n] xn (weighted average of old mean, new sample)



Running averages contd.

§ What if we use a weighted average with a fixed weight?
§ µn = (1-a)µn-1 + a xn

§ n=1   µ1 =  x1

§ n=2   µ2 =  (1-a) × µ1 + ax2  =  (1-a) × x1 + ax2 

§ n=3   µ3 =  (1-a) × µ2 + ax3   =  (1-a)2 × x1 + a(1-a)x2 + ax3 

§ n=4   µ4 =  (1-a) × µ3 + ax4   =  (1-a)3 × x1 + a(1-a)2x2 + a(1-a)x3 + ax4

§ I.e., exponential forgetting of old values
§ µn is unbiased



TD as approximate Bellman update

§ Idea 3: Update values by maintaining a running average
§ sample = R(s,p(s),s’) + γVp (s’) 
§ Vp(s) ¬ (1-a) × Vp(s)  +  a × sample
§ Vp(s) ¬ Vp(s)  +  a × [sample - Vp(s)]
§ This is the temporal difference learning rule
§ [sample - Vp(s)] is the “TD error”
§ a is the learning rate

§ Observe a sample, move Vp(s) a little bit to make it more 
consistent with its neighbor Vp (s’)



Example: TD Value Estimation

Input Policy p

Assume: g = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

A

B C D

E



Example: TD Value Estimation

§ Experience transition i: (𝑠𝑖, 𝑎! , 𝑠!" , 𝑟𝑖).
§ Compute sampled value “target”: 𝑟! + 𝛾𝑉#(𝑠!").
§ Compute “TD error”: 𝛿! = 𝑟! + 𝛾𝑉# 𝑠!" − 𝑉# 𝑠! .
§ Update: 𝑉# 𝑠! += 𝛼! ⋅ 𝛿!.

i s a s' r 𝒓 + 𝛾𝑉! 𝒔" 𝑉! 𝒔 𝛿

1
2
3
4
5
6
7

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

s V(s)
A
B
C
D
E



Example: TD Value Estimation

§ Experience transition i: (𝑠𝑖, 𝑎! , 𝑠!" , 𝑟𝑖).
§ Compute sampled value “target”: 𝑟! + 𝛾𝑉#(𝑠!").
§ Compute “TD error”: 𝛿! = 𝑟! + 𝛾𝑉# 𝑠!" − 𝑉# 𝑠! .
§ Update: 𝑉# 𝑠! += 𝛼! ⋅ 𝛿!.

i s a s' r 𝒓 + 𝛾𝑉! 𝒔" 𝑉! 𝒔 𝛿

1 B east C -1 -1 + 0 0 -1
2 C east D -1 -1 + 0 0 -1
3 D exit --- 10 10 + 0 0 +10
4 B east C -1 -1 + -1 -1 -1
5 C east D -1 -1 + 10 -1 +10
6 D exit --- 10 10 + 0 10 0
7 E north C -1 -1 + 9 0 +8

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

s V(s)
A 0
B -2
C 9
D 10
E 8



Problems with TD Value Learning

§ Model-free policy evaluation! 🎉
§ Bellman updates with running sample mean! 🎉

§ Need the transition model to improve the policy! 😱

s
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Q-learning as approximate Q-iteration

§ Recall the definition of Q values:
§ Q*(s,a) = expected return from doing a in s and then behaving optimally 

thereafter; and p*(s) = maxaQ*(s,a) 

§ Bellman equation for Q values:
§ Q*(s,a) = ås’ T(s,a,s’)[R(s,a,s’) + γ maxa’ Q*(s’,a’) ]

§ Approximate Bellman update for Q values:
§ Q(s,a) ¬ (1-a) × Q(s,a)  +  a × [R(s,a,s’) + γmaxa’Q (s’,a’) ]

§ We obtain a policy from learned Q(s,a), with no model!
§ (No free lunch: Q(s,a) table is |A| times bigger than V(s) table)



Q-Learning

§ Learn Q(s,a) values as you go
§ Receive a sample (s,a,s’,r)
§ Consider your old estimate: Q(s,a)
§ Consider your new sample estimate:

sample = R(s,a,s’) + γ maxa’ Q(s’,a’) 

§ Incorporate the new estimate into a running average:
Q(s,a) ¬ (1-a) Q(s,a) +  a × [sample]

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]



Video of Demo Q-Learning -- Gridworld



Video of Demo Q-Learning -- Crawler



Q-Learning Properties

§ Amazing result: Q-learning converges to optimal policy -- even 
if samples are generated from a suboptimal policy!

§ This is called off-policy learning

§ Caveats:
§ You have to explore enough
§ You have to eventually make the learning rate

small enough
§ … but not decrease it too quickly
§ Basically, in the limit, it doesn’t matter how you select actions (!)



Summary

§ RL solves MDPs via direct experience of transitions and rewards
§ There are several approaches:

§ Learn the MDP model and solve it
§ Learn V directly from sums of rewards, or by TD local adjustments

§ Still need a model to make decisions by lookahead

§ Learn Q by local Q-learning adjustments, use it directly to pick actions
§ (and about 100 other variations)

§ Big missing pieces: 
§ How to explore without too much regret?
§ How to scale this up to Tetris (1060), Go (10172), StarCraft (|A|=1026)?


